Functional Insights into Recombinant TROSPA Protein from Ixodes ricinus
نویسندگان
چکیده
Lyme disease (also called borreliosis) is a prevalent chronic disease transmitted by ticks and caused by Borrelia burgdorferi s. l. spirochete. At least one tick protein, namely TROSPA from I. scapularis, commonly occurring in the USA, was shown to be required for colonization of the vector by bacteria. Located in the tick gut, TROSPA interacts with the spirochete outer surface protein A (OspA) and initiates the tick colonization. Ixodes ricinus is a primary vector involved in B. burgdorferi s. l. transmission in most European countries. In this study, we characterized the capacities of recombinant TROSPA protein from I. ricinus to interact with OspA from different Borrelia species and to induce an immune response in animals. We also showed that the N-terminal part of TROSPA (a putative transmembrane domain) is not involved in the interaction with OspA and that reduction of the total negative charge on the TROSPA protein impaired TROSPA-OspA binding. In general, the data presented in this paper indicate that recombinant TROSPA protein retains the capacity to form a complex with OspA and induces a significant level of IgG in orally immunized rats. Thus, I. ricinus TROSPA may be considered a good candidate component for an animal vaccine against Borrelia.
منابع مشابه
Tick receptor for outer surface protein A from Ixodes ricinus — the first intrinsically disordered protein involved in vector-microbe recognition
The tick receptor for outer surface protein A (TROSPA) is the only identified factor involved in tick gut colonization by various Borrelia species. TROSPA is localized in the gut epithelium and can recognize and bind the outer surface bacterial protein OspA via an unknown mechanism. Based on earlier reports and our latest observations, we considered that TROSPA would be the first identified int...
متن کاملTROSPA, an Ixodes scapularis Receptor for Borrelia burgdorferi
The Lyme disease agent Borrelia burgdorferi naturally persists in a cycle that primarily involves ticks and mammals. We have now identified a tick receptor (TROSPA) that is required for spirochetal colonization of Ixodes scapularis. B. burgdorferi outer surface protein A, which is abundantly expressed on spirochetes within the arthropod and essential for pathogen adherence to the vector, specif...
متن کاملIxodes ricinus immunosuppressive protein (Iris) 1 Characterization of a novel salivary immunosuppressive protein from Ixodes ricinus ticks
متن کامل
Ixodes ricinus Tick Lipocalins: Identification, Cloning, Phylogenetic Analysis and Biochemical Characterization
BACKGROUND During their blood meal, ticks secrete a wide variety of proteins that interfere with their host's defense mechanisms. Among these proteins, lipocalins play a major role in the modulation of the inflammatory response. METHODOLOGY/PRINCIPAL FINDINGS Screening a cDNA library in association with RT-PCR and RACE methodologies allowed us to identify 14 new lipocalin genes in the salivar...
متن کاملVaccination against Bm86 Homologues in Rabbits Does Not Impair Ixodes ricinus Feeding or Oviposition
Human tick-borne diseases that are transmitted by Ixodes ricinus, such as Lyme borreliosis and tick borne encephalitis, are on the rise in Europe. Diminishing I. ricinus populations in nature can reduce tick exposure to humans, and one way to do so is by developing an anti-vector vaccine against tick antigens. Currently, there is only one anti-vector vaccine available against ticks, which is a ...
متن کامل